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Abstract. We prove a theorem which gives an algorithmic solution to the problem of finding 
the logarithmic derivative of the ground-state wavefunction of one-dimensional systems. 
By means of this quantity, as is well known, one can determine the lowest part of the 
spectrum of the Hamiltonian by probabilistic methods. We show that, in some natural 
classes of potentials, the complexity of our algorithm is less than N 3 ,  where N is the 
number of the absolute minima of the potential. Our approach allows a systematic treatment 
of cases of much greater complexity than those analysed so far in the literature and it can 
be useful in the study of physical systems like, for example, long molecular chains or 
superlattice structures. 

1. Introduction 

In this paper we study some features of the one-dimensional Schrodinger operator in 
the semiclassical limit ( h  + 0). In particular we are interested in the properties of 
localisation of the ground-state wavefunction and in the splitting of the lowest eigen- 
values of the Hamiltonian. 

Consider the Schrodinger equation in one dimension H$ = E$, where 

h2 dZ 
2 d x  

H = -- T +  V(x). 

If the potential V(x) has only one absolute minimum in the point x = a then we expect 
that, for h small enough: 

(i) the ground-state wavefunction Go is concentrated near that minimum; 
(ii) the ground-state energy Eo is about hw/2 where U =m; 
(iii) the splitting of the lowest eigenvalues of H is of order h. 

If, on the contrary, V is a multiwell potential with several equal minima (figure l), 
then $o is localised around a certain subset of these minima. Moreover, due to 
tunnelling, the lowest part of the spectrum of the Hamiltonian is characterised by a 
certain number of energy levels whose distance from Eo is exponentially small in h, i.e. 

E, - Eo - exp( -d i /  h )  when h + 0. (1.1) 

Problem. We want to determine the behaviour of the ground-state wavefunction and 
to compute the values of the constants di ,  which give the leading term of the splitting 
in the semiclassical limit. 

0305-4470/89/081027 +26$02.50 0 1989 IOP Publishing Ltd 1027 
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Figure 1. A multiwell potential. 

The prototypical situation is the symmetric double well. In this case one finds (see 
for example [l, 21) that the single-well ground-state energy level splits into two, Eo 
and E , ,  whose difference is given by 

where a, and u2 are the two minima of the potential. 
The analysis of more complicated cases required the development of new techniques. 

In 1981 Jona-Lasinio et al proposed a new approach [3] based on the theory of 
diffusion processes. By this method they discovered that tunnelling is very sensitive 
to small localised perturbations of the potential V, in some interesting situations like 
the symmetric double well and the periodic potential over a finite interval. The idea 
of the instability of quantum tunnelling proved to be a key point in understanding the 
physical mechanism of Anderson localisation in disordered electronic systems [4-61. 
In the approach of [3] the problem is divided into two steps. The first step consists 
in the study of the logarithmic derivative of the ground-state wavefunction. Once one 
knows this quantity, one can determine (this is the second step) the splitting of the 
energy levels by probabilistic methods, using some powerful results of Ventzel and 
Freidlin [7, 81. However the solution of the first step relied on a clever use of two 
integral equations, and became very tricky when the complexity of the potential 
increased. In a subsequent paper [9] a general strategy was developed for solving this 
problem for most of those potentials (which will be called binary potentials) that can 
be constructed as sequences of two types of barriers (figure 2). 
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Figure 2. A binary potential. 
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The aim of this work is to prove a theorem which enables us to construct algorithmi- 
cally the solution of the first step. The advantages of this algorithm are its simplicity 
of use and its high speed. To give an idea, after some practice one can solve the 
problem posed above for a potential with, say, 30 absolute minima, in about five 
minutes without any electronic aid. Much more complicated cases can be easily handled 
by means of a computer, since the complexity of the algorithm is polynomial (more 
precisely it is no worse than N 3 ) .  

Unfortunately this approach is not of general applicability, since there are potentials 
which cannot be solved by our method. These potentials, however, are few, at least 
in some classes where it is easy to count them. In a related paper [lo] we give, for 
these suitable classes, a numerical estimate of the percentage of potentials that can be 
solved. For this purpose we have written a computer program that implements the 
algorithm. We have determined, for example, that more than 99% of all binary 
potentials can be treated by this method. 

The analysis of multiwell potentials in the semiclassical limit has been extended 
by Helff er and Sjostrand to arbitrary dimension in [ 11,121 and rederived by Graffi et 
a1 [ 131 and by Simon [ 141 using functional analytic methods. 

The organisation of the paper is as follows. A general outline of the approach is 
contained in § 2; in § 3 we define a mapping, Ext, which is the fundamental object of 
our construction; in § 4 the theorem which determines the logarithmic derivative of 
the ground-state wavefunction is stated; in 0 5 we show that the complexity of the 
algorithm is at most N 3 ;  § 6 contains some examples that show how to apply the 
algorithm in practice; § 7 is dedicated to the proof of the main theorem; the proofs of 
two basic lemmas are collected in an appendix. 

2. Outline of the approach 

Consider the Hamiltonian 

h2  d2 
2 d x  

H = -- 2+ V(x). 

We assume that 
(1) V E C Y R ) ,  
(2) V has several points of absolute minimum x l ,  . . . , xN, 
( 3 )  V(x) 2 0 and V(x) = 0 if and only if x = xi for some i, 
(4) V(x) goes to +cc faster than x2 when IxI+co. 

and Eo be the ground-state eigenfunction and eigenvalue of H and let Let 

One can show that the operator 

1 ; (H - EO) on L2(R, dx) 

is unitarily equivalent to the operator - Lh, where 

on L2(R, & dx).  
h d2 d L =- -+ bh(x) - 

' -2  dx2 dx 
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In turn, adapting a theorem by Ventzel[7], the study of the lower part of the spectrum 
of -Lh can be reduced, when h + 0, to the study of the spectrum of a finite matrix. 
The problem is that we do not know ccl0, so we do not know bh, an essential ingredient 
of Le. In conclusion, within this approach the problems posed in the introduction 
can be solved if one only knows the function 

bo(x) = lim bh(x). 
h - 0  

What we want to do in this paper is the describe an algorithm to construct bo. The 
procedure to calculate the constants di that appear in the splitting of the eigenvalues 
(1.1) is straightforward when one knows bo and is described in [9 ,  lo]. 

2.1. General properties of bo 

In the following we will make extensive use of some general properties of the functions 
bh and bo that have been derived in [3,9]. Their starting point is the observation that 
from the Schrodinger equation for 

d 
dx 

one obtains 

(2.1) h -  b*(X) +(b,(x))2= 2( V(X) - E , ( h ) ) .  

From this equation, equipped with appropriate conditions at infinity which ensure that 
+,,E L2(R,  dx),  they prove the following. 

(i) Let I be a finite closed interval; then Vr] > 0 3ho> 0 such that if h < ho then 

max Ibh(x)l s max m+ r] 
X E I  X E  I 

(the functions bh are uniformly bounded on every finite closed interval for small h ) .  
(ii) N - 1 points yi E [xi, xi+l], i = 1, . . . , N - 1, exist such that if x # y i  for each i 

then bo(x) = lim,,o bh(x) exists and 

b,(x) = +a 
b,(x) = -- 
b,(x) = -- 
b , (x )  = +- 

v x  E (-a, X I )  

v x  E [XN, +a) 

V X E  [xi, y i )  

VX E (Vi,  xi+ll* 
(iii) Let I be a finite closed interval and let a E (0, 1). Then 3C > 0 such that if 

X E I  and Ix-y,I>h",Vi, then 

Ibh(X) - bo(x)l< Ch" 
(i.e. the convergence of bh to bo is uniform on every finite closed interval that does 
not contain any of the jump points y i ) .  
From propositions (i) and (iii) it follows that if I is any finite closed interval then 

lim J bh(x) dx = 
h-0 I 

We see from proposition (ii) that bo can exhibit several (at most N - 1)  points of 
discontinuity where it jumps from -m to +m, and that the knowledge of 
the locations of such points is equivalent to the knowledge of the function bo. We 
remark that, since 

Yi =Yi+l 
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is allowed, the number of diflerent yi can be less than N - 1 .  Moreover when yi = xi 
or yi = xi+l there is no discontinuity in y i ,  since V(x,) = V(X,+~)  = 0. Thus the true jump 
points are those yi such that yi E (xi, xi+l). 

The complete determination of bo has been carried out in [3,9] in many interesting 
cases with the help of the following equations. 

Let t E R and f: R + R; we denote by j :  the reflection off about the point t and by 
7 the translation off 

f (x )  =f(2t - x )  and J(x) = f ( x +  t ) .  

From (2.1) one obtains, Vx, y E R, 

-f Jxy ( V - ? ) ( ~ ) e x p ( i { ~ ~  (b,-&,)(u)du) dw 

and 

The idea is that if you choose the values of x, y and t cleverly, you can get information 
on bo from the above equations without solving them explicitly, but simply using (2.3) 
and (2.4) as consistency conditions. 

2.2. Outline of the algorithm 

Before stating the precise formulation of the algorithm that enables us to determine 
bo, we give some rough indications about it. 

As we remarked above, the problem is to decide whether b o ( x ) = + m  or 
bo(x) = -m for each x that does not coincide with any of the jump points yi.  
For this purpose we will define recursively a sequence, {Aj}, of nested subsets of R 

A o c  Ai C A 2 C . .  .C C . .  . C R. 

As regards the geometrical structure of {A,}, each Ak is the disjoint union of a finite 
number of closed intervals, i.e. 

A k = [ a , , b , l u . . . u [ a n , b n l  

and, in particular, A. is the set of the points of absolute minimum of V (figure 3) 

A ~ = { x , } u . .  .u{xN}. 

Then we will prove a theorem by induction; at the step k of the induction this theorem 
tells us which is the sign of bo on the set Ak.  When the algorithm is successfully 
implemented we arrive at Ak =R after a finite number of steps (the number of steps 
is always less than 2N). 
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Figure 3. An example of Ak sets. 

For the recursive definition of the set starting from A,, we proceed roughly 
as follows. First we look at the closed intervals which make up A k  and choose some 
of these intervals, which are said to be maximal. They are chosen in such a way that 
the potential V on a maximal interval is, in a certain sense, lower than the potential 
on a non-maximal interval, so that the maximal intervals are the best candidates to 
represent the localisation set of the ground-state wavefunction (in figure 3 maximal 
intervals are marked with a ). Then we extend in some way all the maximal intervals 
of A,, while non-maximal intervals are left unchanged. This new set that we have 
obtained is just A,,,. 

3. The mapping Ext 

In this section we construct a mapping, which we call Ext, which allows us to define 
recursively a sequence {A,} of nested subsets of R 

A o c  A1 A ~ c . .  .c A, . .  .c R 

setting A,,, = Ext(&). 
This is by far the most important step in our algorithm because once we know the 
sequence { A j } ,  we can get bo by means of an extremely simple rule. 

Ext acts on those subsets of R which can be obtained as a union of a finite number 
of closed intervals, i.e. sets like 

A = I, U . .  .U I ,  (3.1) 
where 

Ii = [ a i ,  bi].  

We denote this family of subsets of R by R, so that 

Ext: Cl + Cl. 

(3.2) 

There are of course infinitely many ways of representing an element of R as a union 
of closed intervals, but in only one representation can the intervals be taken disjoint. 
So, if 

I i n 4 = 0  when i#j (3.3) 
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then (3.1) is said to be the standard representation of A and the intervals Ii are called 
the components of A. In the following we always assume that (3.3) holds, unless there 
is an explicit statement to the contrary. 

3.1. The maximal components 

The aim of this subsection is to give three definitions which are necessary to understand 
how Ext acts. The three terms we define are equivalence, preference and maximal 
components. We assume that a potential V satisfying the hypothesis of 0 2 is given. 

Dejnition of equivalence. Given two closed intervals [a, b ]  and [ c, d ]  we say that they 
are equivalent (and write [a, b ]  = [ c, d ] )  if they have the same length and if the potential 
V on [c, d ]  is the translation or the reflection of the potential V on [a, b ] ,  i.e. if 

b - a z d - c  

and either 

v ( x ) =  v T ( X ) =  V ( c - a + x )  V X E [ U , b ]  

or 

V ( X ) =  VR(X)' V ( a + d - x )  V x  E [a, b ]  

where V,  is the potential obtained translating V form [c, d ]  to [a,  b ] ,  while V R  is the 
reflected potential. 

We say also that [a, b ]  2 [ c, d ]  if 

b - a = d - c  

and either 

v ( x ) a  vT(X) '  V ( c - a + x )  Vx E [a, b ]  

or 

V ( X ) ~  VR(X)' V ( a + d - x )  V x  E [a, b ] .  

Finally [a, b ] > [ c , d ]  means [ a ,  b ] ~ [ c , d ]  and [a, b ] + [ c , d ] .  

Dejnition ofpreference. Given any closed interval I = [ a ,  b ] ,  we define 

I(&)= [ U  - E ,  b + E ] .  

Let I and J be two closed intervals. I is said to be preferred to J if one of the following 
two propositions (pl  or p2) is true: 

pl: I = J and 
p2: there exists a closed interval K strictly contained in I such that K = J and 

K'"'s  J '" )  for some E > 0. 
If p1 is true we also say that I is p,-preferred to J ;  in the second case we say that I 
is p2-preferred to J. 

0 such that V E  < I ( " ) < J ' " ' ;  

Example. Look at figure 2 and consider the intervals [2,3] and [9, 101. Clearly we have 

[2 ,31=  [9,101 

[2 - E ,  3 + E ]  < [9 - E ,  10+ E ]  V& < 1. 
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So [2,3] is p,-preferred to [9,10]. Consider now [2,4] and [5,8]. [5,8] turns out to 
be p,-preferred to [2,4]. In fact if we choose K = [5,7] c [5,8] then it is easy to check 
that 

[5,71= ~ 4 1  

[5 - E, 7 +  E ]  s [2- E, 4+ E ]  V& < 1. 

Dejnition of maximal components. Let A E ~  be given by (3.1) and (3.2). By means 
of preference we can (partially) order the components 1, of A. The maximal components 
of A are those intervals which are maximal with respect to preference. In order words 
I ,  is said to be maximal in A if there is no other component I j  such that I j  is preferred 
to If. 

The maximal intervals are especially relevant since they are the candidates to 
represent the sets where the ground-state wavefunction is concentrated in the semi- 
classical limit. 

3.2. The mapping Ext 

Given a closed interval [a, b] and a real number a 2 0, we define the a-extension of 
[a ,  bl as 

Ext,([a, bl)  = [c, dl  
where [a ,  b] c [c, d] and c, d are determined by the conditions 

[ca m dx = jbd d x  = a. (3.4) 

The quantity If: 
be denoted by p(a,  c). 

dxl is called the Agmon distance between a and c and will 

If we have not just a single interval, but a set like A given by (3.1) then we define 
A A 

Ext,(A) = I, U . . . U I,, 
where 

i, = { Extm(Ii) if I, is maximal 
if Ii is non-maximal. I 

Remark. The intervals i,, . . . , f,, can of course intersect, depending on the value of 
a, so II U . . . U I,, is not necessarily the standard representation of Ext,(I, U . . . U In). 

The last point required in order to define the mapping Ext (without index) is how 
to choose the value of CY in Ext,. The rule is the following. Let A, as usual, be given 
by (3.1) and suppose that the intervals I ,  are ordered in such a way that I , ,  . . . , I,,, 
are maximal, while I,,,+], . . . , I,, are non-maximal. In this way we can write 

Exta(A)=[a,(a) ,  b 1 ( a ) l u * * *  u[am(a) ,  bm(a)Iu[am+l,  bm+lIu  an, b n l  
where a , ( a )  and b , (a )  are clearly given by 
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Now we associate a real number, which we call .(A), with the set A. .(A) is defined 
as the largest non-negative real number a with the following conditions. 

(i) The intervals that make up Ext,(A), i.e. 

do not overlap. More precisely, they are allowed to be disjoint or adjacent; 
(ii) the a-extended maximal intervals 

[ a , (a ) ,  b l ( a ) l , .  . 9 [ a m ( & ) ,  b m ( a ) I  

are all equivalent. 
If there is no such value of a then we set .(A) = 0. 
Finally, the mapping Ext is defined by 

Ext: A +  EXt,(,,(A). 

Thus we have 

Ext(A) = [ a , ( P ) ,  bl(P)I U * * * [ a m ( @ ) ,  b m ( P ) I  U [am+, ,  b m + l l  U * . * U [ a n ,  b n l  (3.5) 
where P = a ( A ) .  

Remark. Owing to condition (i), some of the intervals which make up Ext(A) can be 
adjacent. In the standard representation of Ext(A) each group of adjacent intervals 
which appears in (3.5) must be replaced by one interval that covers the whole group. 

Now let 

Ext(A) = J1 u . .  . U J,  

be the standard representation of Ext(A) in terms of disjoint closed intervals J,. Then 
the general structure of each Ji is clearly 

Ji = Ext,(K,) u . . . U Extp(Kp) u L1 U. . . U L, (3.6) 

where Ki are some maximal components of A and Li are some non-maximal com- 
ponents. The p + q  intervals Ki and L, are of course all adjacent. Moreover the p 
intervals Ext, ( Ki) are all equivalent. 

It will be useful in the following to also define the left and the right extensions of 
A given by 

Lext(A) E ( a l ( P ) ,  a , )  U * * * U ( a m ( P ) ,  a m )  

Rext(A)=(bl ,b , (P) )u  ... u ( b m ,  b m ( P ) )  

with /3 = a ( A ) .  Clearly we have 

Ext(A) = A U cl Lext(A) U cl Rext(A) 

where cl stands for the topological closure. 

4. The algorithm for constructing bo 

We assume that a potential V satisfying the hypothesis of 0 2 is given and that x l ,  . . . , x N  
are the points of absolute minimum of V. We set 

A, = {xI} U . . . U { x N }  Lo= R o s 0  
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and then define recursively 

For simplicity of notation we also set 

(Yk .(A,). 

As we observed at the end of previous section, we have 

Ak =Ak-1 V cl Lk V Cl Rk 

which implies 

Thus it is clear that if one knows bo on the sets Lj and Rj V j G  k then one also knows 
bo on Ak (with the exception of a finite number of istlated points, but this is not 
relevant since we are always interested in quantities like 5, bo(x) dx). The key theorem 
is then the following. 

Theorem 4.1. For each natural number k we have 

b o ( x )  = +- if x E Lk 

bo(x) = -- if X E Rk. 

The algorithm has a successful implementation if Ak = R for some k. We will show in 
a related paper [ 101 that this situation is very likely, at least in some interesting classes 
of potentials. 

It is easy to convince oneself that the algorithm must stop (that is Ak = Ak-l) after 
a number of steps which is not greater than 2N. In fact, from conditions (i) and (ii) 
that define the quantity a ( A )  in 0 3.2, it follows that, at each step, either (at least) two 
components of Ak become adjacent or (at least) one maximal component becomes 
inequivalent to the other ones. In the first case the total number of components of A k  

decreases, while in the second case the number of maximal components must decrease. 
But this can happen at most 2 N  times since we start with A. which has N components 
and at most N maximals. 

5. Complexity of the algorithm 

It is well known to information theorists, as well as to most people who have bought 
CPU time from some computational centre, that one of the main features of any 
algorithm is its complexity, i.e. the number of elementary operations (we also call this 
number time or cost) which are necessary to solve a problem as a function of the 
dimension of the problem. Thus we dedicate this section to estimating the time TN 
that our algorithm takes to solve a potential, as a function of the number N, of the 
absolute minima of the potential. 
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Of course, a true algorithmic solution (i.e. in a finite number of steps) is possible 
only for those potentials which can be specified by giving a finite amount of information, 
so we consider in the following the (quite natural) class of potentials which are 
sequences of a certain number of barriers of fixed shape. More precisely consider k 
types of potential barriers V, with support in [0, 11 which satisfy 

o <  V,(x)< V*(x)< . . .  < V,(x) v x  E ( 0 , l )  

V , ( O ) =  V , ( l ) = O  V i =  1,. . . , k. 

Now to each sequence of N integers { h , } ~ ,  with 1 S h, s k, we associate a potential 
V on [0, NI given by 

v(x) = vbt(x-[xl) if x E [ i - l ,  i] 

where [XI denotes the integral part of x. This is just the potential that one obtains if 
one puts the barriers Vhz, vb,, . . . , V,, in sequence. V is defined outside [0, NI in 
such a way that it increases faster than xz when 1x1 +CO (the particular shape of V in 
this region is not relevant). The family of all the potentials that can be obtained in 
this way is denoted by P;. It clearly contains k N  elements. If V belongs to P;  for 
some N and k, we call it a string potential. 

Now we want to show that the time T N ,  required by the algorithm described in 
the previous section to solve a string potential, obeys 

T N  6 C N 3  ( 5 . 2 )  

for some constant C. 

some experimental values of T N  are collected. 
Before reading the following argument it could be useful to glance at table 1, where 

Table 1. CPU time required to solve a string potential for some values of N. 

CPU time (s) 
N VAX 8650 

100 0.018 
300 0.120 

1000 1.0 
3000 8.0 

Since a detailed proof of ( 5 . 2 )  is quite involved, we will make use of some simplifying 
assumptions and intuitive statements. Moreover we think that, by means of arguments 
more refined than ours (which are actually very rough), bound ( 5 . 2 )  can be improved. 
This is also suggested by the data of table 1 .  Our primary interest was, however, to 
show that the algorithm has a polynomial complexity. 

As we remarked at the end of the previous section, the number of recursive steps 
cannot exceed 2 N ,  so 

T N  S 2 N t  

where t is the maximum time required to construct hp+l starting from Ape We 
decompose t as 

t = t l  + t2+ t3 
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where t l  is the time needed to find the maximal components of A,, f2  is the time taken 
to compute ap and f 3  is the time necessary to construct the a,-extension of all maximals. 

As usual we let 

A p  = Ilu . . . U In. 

In order to simplify the discussion we assume that each component I ,  consists of an 
integral number of barriers (this is not true in general, but eliminates some boundary 
N-independent complications). In this way, with each component I ,  of length I ,  we 
can assaciate a 1,-ple 

( h y ,  * . * ,  hZ") 

which gives the heights of the barriers that make up I , .  We also define 

m = number of maximal components in A,. 

Let us begin by estimating t , ,  t2 and t,. 

of maximals with something which is independent of N. So we have 
t ,  is the easiest to compute, since it is simply given by the product of the number 

t , -A,msA,N.  

As regards t l  , we know that, in order to find the maximals, we have to compare each 
pair ( I , ,  I , )  of components of A, and check if I, is preferred to I ,  (of course, in most 
cases we do not need to compare each pair). If we set 

pV = cost of ( I l ,  I , )  preference test 

we obtain 

where we have separated the cost of checking p,-preference from the cost of checking 
pz-preference. The cost of p,-preference is (apart from boundary N-independent 
complications) equal to the cost of equivalence. In turn Ii  is equivalent to 4 if and 
only if 

1. = 1. 
1 1  

and either 

hh" = 

h c )  = h y l a + ]  

v u  = 1,. . . , lj 
or 

V u  = 1,. . . , I i .  

In the last of these conditions we have supposed that each barrier V , ( x )  given by (5.1) 
is symmetric about its middle point, otherwise reflection equivalence would not be 
possible. From the above conditions it follows that the cost of the equivalence test is 
given by (twice) the number of barriers that make up each interval if they have the 
same length, while it is an N-independent constant if the two intervals have different 
lengths, so 

p y -  l jS ( l j ,  4 )  
where 6( a ,  e )  is the Kronecker delta. 
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p2-preference is a little more complicated. Assume in fact Zi > 4 .  We have to look 
for a subinterval K of I i ,  of length 4 ,  such that K is equivalent to 4. Again we observe 
that the second condition 

K ( ' )  s I j " )  for some E > 0 

is a boundary condition with a fixed cost, so we do not worry about it. The number 
of all possible subintervals is, a priori, li - I ,  + 1, since the absolute minima of K must 
be put in correspondence with those of 4. Thus, since the cost of equivalence is 4 ,  
we get 

p y - ( l i - h + l ) 4  

and 

2 i ( l i + 4 ) s 2  i li4=2(!,li) s 2 N 2  
i , j = l  i , j = l  

so that 

t ,  s A ,  N ~ .  

It remains to estimate the time necessary to find a ( A p ) .  To compute a ( A p )  we proceed 
roughly as follows. Consider the maximal components of Ap and: 

(1) add one barrier on the left and one barrier on the right of each of them (again 
we are simplifying, since the a extension must be taken symmetric in the Agmon 
distance, but this does not introduce any relevant complication); 

(2) check the conditions (i) and (ii) which define the quantity a ( h ) ;  
(3 )  if they are both satisfied then go back to ( l ) ,  else stop. 
Now let L be the (common) length of the ag extension of the maximal components 

and g be number of iterations of the above procedure (1) + (2) + (3 ) ,  i.e. is the number 
of barriers added to the left (or to the right) of each maximal. Also let qi) and qiij be 
the costs of checking conditions (i) and (ii) of P 3.2, respectively. Clearly we have 

t ,-g(m+s(i)+~(ii)) .  

In order to test condition (i), we can check, for example, if the first maximal is 
equivalent to each of the remaining m - 1 maximals, so we need m .- 1 equivalence 
tests on intervals which have a length not greater than L. This implies 

qi) - mL s N. 

Condition (ii) requires 2m operations to see if each maximal has intersected any of 
its two neighbouring intervals, so 

s(ii) - m s N. 

Besides, we observe that the total number of added barriers cannot exceed N, so we 
can write 

2 g m s  N 
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and obtain 

t , - g ( m  +mL+ m ) s  g ( 3 N ) s 3 N 2 / 2 m  s A 2 N 2 .  

Now we have all the ingredients required to estimate TN 

T~ s 2 N (  t ,  + t2+ f3) s 2 N ( A , N 2 +  A , N 2 + A 3 N )  s CN3. 

6. Some examples 

Here we give some examples to see how to apply the algorithm in practice, with the 
help of some figures. We always consider a potential V which is a sequence of barriers 
of two types (binary potentials) or three types (ternary potentials). 

The closed intervals that make up Rk are represented in the figures by means of 
horizontal lines, except the isolated points which are never drawn, since they have no 
effect after the first step. 

A# posed under an interval of Ak denotes that such an interval is maximal. 
As soon as we find A k  we write the sign of bo following the rule to theorem 4.1: 

plus on Lk and minus on Rk. 

Example 1 (figure 4). Here we have a binary potential. The maximal components of 
A, are the three minima which lie between two adjacent low barriers. They are marked 
with a # .  Now we construct A, by means of the function Ext: we have to find three 
closed intervals centred (in the Agmon metric) on each maximal component of A,, as 
large as possible, but they must be equivalent and they must be disjoint or adjacent. 
Now we put a + sign on the left extension of each of these intervals and a - sign on 
the right extension. 

If two or more intervals have come into contact they will be considered as one 
interval only, so A, is made up (apart from isolated points) of two intervals. We call 
the left interval J and the right interval I. It is easy to check that I is p,-preferred to 
J (the role of K can be played by either of the two halves of I ) ,  so I is the only 
maximal component in A , .  Once we remain with one only maximal element the game 
is over. In fact the maximal interval will begin to extend and at each step of the 
iteration it will merge with at least one non-maximal element of A k .  In this way, after 

t " 1  
I 
I 

- 
A2 

A3 

t 
X 

- + 

i 

X 

Figure 4. Example 1; application of the algorithm to a binary potential. 
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a finite number of steps A k  (in our example A2) itself will be just one interval, so that 
A,+, = R. Thus the sign of bo is plus on the left of the maximal interval and minus on 
its right (except, of course, in those regions of R where the sign has been already found 
in a previous step). 

In this example we have skipped all the steps where one interval comes into contact 
with an isolated point of Ak, since that has no consequences in the procedure. 

Example 2 (figure 5 ) .  We again have a binary potential. Here A2 contains (apart from 
isolated points) three intervals, but the first one (marked with a #  ) is the only maximal 
interval: in fact it is pl-preferred to the second interval and p2-preferred to the third 
one. Therefore, as explained in example 1, we can skip the intermediate steps and 
establish the sign of bo everywhere. We repeat for clarity that the + and - which 
appear on the A3 line have to be considered valid only in the regions not already 
covered by A2 or by A l .  

Example 3 (figure 6 ) .  Finally we would like to finish with a failure! We have chosen 
a ternary potential, since the analogous situation with a binary potential would require 
at least 20 barriers. In this case we meet the following problem: A, contains (apart 
from points) two closed intervals that we call I and J. We see from figure 6 that, of course 

I = J  

~ I ~ I . l . I ~ l . I . l . I . I . I . I . i  

X 

Figure 5. Example 2; application of the algorithm to another binary potential. 

X 

Figure 6. Example 3; failed application of the algorithm to a tenary potential. 
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but, for each E > 0, the two statements 
I ( € '  3 J'"' 

I ( & )  < J'"' 

are both false. Moreover 

Ext,(I) + Ext,(J) Vf f>O.  (6.3) 
Expressions (6.1) and (6.2) tell us that neither is I preferred to J nor J preferred to 
I. So the two intervals are both maximal. But ( 6 . 3 )  implies that a1 = . (Al )  = 0, and, 
in consequence, A, = Ext(Al) = A l .  We see that, in this case, the algorithm stops before 
Ak has covered R. 

7. Proof of the theorem 

Let I = [a ,  b ]  be any closed interval. In the proof of theorem 4.1 it will be essential 
to know the sign of bo on some neighbourhood of I when I is one of the components 
of Ak.  Since the number of points where bo changes its sign is finite we can always 
find two points z1 < a and z2 > b such that bo has a definite sign on ( z l ,  a )  and on 
(b ,  ZJ. In this way we can divide the closed intervals into four classes 

(++) if b o ( x ) = + m  V x  E (z1, a )  U (b ,  Z J  

(--) if b o ( x ) = - m  V x  E (z1, a )  U (b ,  z2) 

We want also to quantify the amount of plus sign on the left of I and the amount of 
minus sign on its right. So let a > 0 and [c, d ]  = Ext,(I). We define 

p , ( I ) = i n f { y ~ [ c ,  a ] ~ b o ( x ) = + ~ V x ~ ( y ,  a ) }  (7.1) 

ma( I )  = sup{y E [ b, d ] l  bo(x )  = -- V x  E (b ,  y ) }  (7.2) 

P,(I) = P ( P a ( 0 ,  a )  

and 

Mc?(I) = P ( " ( 0 ,  b )  
where p is the Agmon distance defined in (3.4). Clearly 

c s p , ( I ) s  a b s me( I )  s d 
O S P , ( I ) S a  OSM,(I )ScU.  

Z,(I) =min{P,(I), M,(I)l. 

Finally we set 

Z,(I) is positive, of course, if and only if I is a (+-) interval. 

Remark. It is worth recalling here that bo is the (semiclassical) log derivative of the 
ground-state wavefunction Go, so a large value of 2, ( I )  is intuitively connected to an 
expectation of finding Go concentrated in I. One of the main steps in the proof of the 
theorem is to show that only the maximal components in Ak are allowed to have a 
value of Z,( * ) greater than zero. 
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In order to find the sign of bo it will be crucial to recognise that some subsets of R 
have the following interesting property. 

Definition 7.1. Let A be any subset of R. We say that A is transitive if the following 
statements are true: 

(i)  if bo(x) > 0 for some x E A, then bo( U )  = +- 5 0 V u  E A, U > x; 
(ii) if bo(x) < 0 for some x E A, then bo(u)  = - m s  0 V u  E A, U < x. 

In other words transitive sets can contain at most one point where the sign of bo 
changes from minus to plus and no points where the sign goes from plus to minus. 
Proposition (ii) of 0 2 just says that the intervals [xi, xi+,] are transitive. 

Now let ( a ,  b )  and (cy d )  be two disjoint open intervals (for example b < c) and 
assume that they are both transitive. It is easy to see that if [b,  c ]  is of type (++), 
(--) or (-+) then the set ( a ,  b )  U (c ,  d )  is also transitive. So the intervals which 
belong to the above three classes can connect transitive intervals and give more complex 
transitive sets. For simplicity we give them a specific name. 

Definition 7.2. Closed intervals of class (++), (--) and (-+) are said to be connective. 

It is clear that a closed interval [ a ,  b]  is connective if and only if 

Z , ( [ a ,  b l )  = 0 V a > O .  

we can now state two lemmas (for their proofs see the appendix) that constitute the 
basic instruments for determining bo. 

Lemma 7.1. Let I and J be two closed intervals and let a > 0 be such that 

Ext,(I) = Ext,(J) and bo(x) dx = b0(x) d x  = 0. 

Then & ( I )  = Z,(J). 

Lemma 7.2. Let I and J be two closed intervals such that 

I is p,-preferred to J and [ I  bo(x) dx = bo(x) dx = 0. 

Then J is connective or, equivalently, Z,(J) = 0 V a  > 0. 

The relevence of the above two lemmas is the following. The problem of finding 
the ground-state wavefunction in a multiple-well potential is a global one. We mean 
that the knowledge of the potential V on some finite interval cannot give, by itself (we 
stress that in our approach we never need to know Eo),  any information about the 
behaviour of +bo on that interval. For this reason, any device which allows us, under 
certain conditions, to subdivide the global problem into several local problems is of 
fundamental utility. Lemmas 7.1 and 7.2 do just that. In fact, if we can find two 
intervals I and J which satisfy the second condition of each lemma, then we can get 
information on bo (which is contained in the quantity Z,( - )), simply by looking at 
the potential in some neighbourhood of the two intervals. 
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The key observation at this point is the following. If we assume theorem 4.1 to 
hold, then the second condition of lemmas 7.1 and 7.2 is satisfied for each component 
of A,, since each component consists of an equal number of left and right extensions. 
Moreover the second condition is trivially satisfied if I and J are components of A,. 
This strongly suggests that an inductive proof could have a good chance of success. 

7.1. Proof of theorem 4.1. 

In order to prove the theorem will prove each of the following statements for each k: 
( A )  if (x, y )  is any open interval such that (x, y )  n Ak = 0 then (x, y )  is transitive; 
( B )  bo(x) = +- if X E  Lk and bo(x) = -m if x E Rk or, equivalently, 

Zak-,(Z) = (Yk-1 if I is a maximal component in Ak-1; 
( C )  if I is any closed interval which is equivalent to some component of (in 

particular I can be itself a component of A,) then I, b,(x) dx = 0; 
( D )  if J is a non-maximal component of Ak then J is connective; 
( E )  if (x, y )  is any open interval that does not intersect any maximal component 

of A, then (x, y)\Ak is transitive. 
Proposition B is just theorem 4.1. 

The proof is by induction on k and is organised in several steps. We denote by 
A k  the proposition A at the kth step of the induction, and similarly B k ,  C k r  etc. The 
following steps enable, as one can check, the proof of all the statements A-E for each 
k. 

( 1 )  Proof of &, B o ,  C O ,  Do 
(2) Ak+Dk*Ek 
(3) Ak-l*Ak 
(4) Ck--l+Ek--l*Bk 
( 5 )  Ck-l+Bk*Ck 
( 6 )  Dk-I+Bk+Ck*Dk. 

Remark. We are aware that the following proof, though elementary, requires a good 
deal of patience, so we suggest that first the reader concentrate his attention just on 
step 4, which is the core of the proof. Then, if he is interested, he can go back to the 
other steps. 

Step 1 .  & follows from proposition (ii) of § 2, since A, is the set of the minima of V. 
Bo and CO are trivial. As regards Do, we note that if I is the component of A, which 
is preferred to J,  since I and J are both points, then I is p,-preferred to J. Thus we 
can apply lemma 7.2 and obtain Do.  

Step 2. A k + D k * E k .  Since h k  is the union of a finite number of closed intervals 

A k = [ a i , b i l u . . .  u[an,bnl  

then (x, y)\Ak has the form 

(X, y)\Ak = (b,, aj+l) U * - *U  (b19 a / + ~ )  

where the intervals [a,,  b i ] ,  i = j +  1, . . . , I, are, by the hypothesis, non-maximal in 
and, by proposition D k ,  connective. so (x ,y) \hk  is the union of transitive (by 
proposition A k )  open intervals separated by connective intervals. This implies, as we 
remarked above, that (x, y)\& is itself transitive. 
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Step 3. Ak-l+Ako Since A k - ,  c hk,  proposition Ak is weaker that Ak-,. 

Step 4. Ck-l+Ek-l+&. This is the core of the proof. Let 

Ki = [xi, ~ i l  i = l , . .  . , p  

be the p maximal components of Ak-1. We assume that they are in increasing order, 
i.e. any point inside K,  is greater than any point inside K ,  if 1 > m. Also let 

[ a , ,  b , l =  Extp(K,) 

where we have set p = a k - 1 .  So the left and the right extensions of Ak-l  are given by 

P P 
R k  = U (Yi, b z )  

1=1 
L k  = U (at, xi) 

I = 1  

and 

d a l ,  X J  = d Y l ,  bl) = P.  

w = p (  w, x,) < p. 

Assume now that 3 w E (a,, x,) such that bo( w )  < 0 and let 

We want to show that this leads to a contradiction. The strategy is the following. 
Choose one point w, in each open interval ( a l ,  x , )  determined by the condition 

dW1, XI) = w 
so that w = w,. Since bO(w)<O we have p p ( K , ) 3  wJ (see equation (7.1)) and, by 
consequence 

Pp (K,) W < p. (7.3) 

The key point is to prove that (7.3) implies Pp(KI-J  s W. In fact applying this argument 
j - 1 times, we obtain P p ( K 1 )  s W .  I n  that case we could find a point z E ( a , ,  x,) such 
that bo( z )  < 0. But this is impossible. In fact the interval (-CO, x,) does not intersect 
any maximal component of Ak-l  and so the set (-00, x,)\Ak-, is transitive by proposi- 
tion Ek-l .  But since z is contained in (-00, X,)\Ak-l  and bo(z) < 0, then we conclude 
that 

bo( X )  = -m 
in contradiction with proposition (ii) of 0 2. 

Now we prove that P P ( K , - , )  s W follows from (7.3). Consider, in fact, the interval 
(y,-,, x,). It does not intersect any maximal component of A k - l ,  so ( Y , - ~ ,  x,)\Ak-] is 
transitive. Clearly 

V x  E (-00, inf A k - , )  

(YJ-1 ,  b J - l )  ('19 x,)c (y,-11 X J ) \ h k - l .  

Since w E (a, ,  x,) ,  from bo( w )  < 0 it follows, by transitivity, that 

bo( X )  = -v'TV(F) v x  E (Y,-l,b,-l) 
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We know that all a k - 1  extensions of the maximal components Of Ak-1 must be equivalent 
and, in particular, 

EXtp(Kj-1) z EXtp(Kj). 

Besides, proposition Ck-1 tells us that 

bo(x) d x  = bo(x) d x  = 0. I, L, 
Thus we can apply lemma 7.1 and obtain 

2, ( K j - ] )  = z, ( K , )  < Pp ( Kj) d w < p 

PP(Kj-])S w. 
which, combined with (7.4), gives 

In this way we have shown that bo is nonnegative on Lk. Analogously one proves 
that bo(x) = -- Vx E &. 

Step 5. C k - l + B k + C k .  Let I be a closed interval equivalent to some component, J, 
of h k .  We want to prove that I, bo(x) dx = 0. Let, as usual, p = ( Y k - 1 .  From (3.6) we 
know that the general structure of J is 

J = Extp ( K , )  u . . . U Extp( K , )  u Fl u . . . U Fq 

where K,  are some maximal component of 
components. Since I = J we can decompose I as 

while F, are some non-maximal 

I = EXtp(M1) U . .  .U EXtp(Mp) U NI U.  . .U Nq (7.5) 

in such a way that MI = K , ,  Extp(M,) = Extp(K,) and N, = F,. From proposition Ck-1 
we obtain 

I,, bo(x) d x  = 0 IN, bo(x) dx = 0. 

I Extp ( M ,  1 

(7.6) 

Now we apply lemma 7.1 to each couple of intervals K ,  and M, and get 

Zp(M)  = Z,(K,) = P 
where the last equality comes from proposition B k  (remember that K ,  are maximal). 
But this implies that 

bo( x)  dx = bo(x) dx = 0. (7.7) I,, 
Equations (7.5)-(7.7) give finally 1, bo(x) d x  = 0. 

Step 6. Dk-I  + B k + C k J D k .  Let J be a non-maximal component of Ak. We have to 
prove that J is connective. Since J is non-maximal, a component I of Ak must exist 
such that I is preferred to J. Proposition Ck tells us that 

j, bo(x) d x  = 0 and bo(x) dx = 0. 
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If I is p,-preferred to J we apply lemma 7.2 and obtain our thesis directly. Consider 
therefore the p2 case. By definition, a closed interval K strictly contained in 1 exists 
such that 

(a) K = J  
(b) 3s > 0 such that K(")s  J'"'. 

Proposition (b) can be written as either 
(b,) 3s > 0 such that V6 < E, K(')< J") 

or 
(b2) 3 s > O  such that K'"'=J'"'. 

Since K is equivalent to a component of Ak, we know from proposition Ck that 

b , (x )  d x  = 0. 

If (b,) is true then we have only to observe that, in this case, K is p,-preferred to J, 
so we can use lemma 7.2, and conclude that J is connective. The (b2) case is much 
more intriguing and a detailed proof of statement D in this case would be very 
cumbersome and not particularly instructive, so we prefer to give only a sketch of how 
to carry it out. 

The idea is to show that 

Z,(K)=O Va>O (7.8) 

and then to apply lemma 7.1 to J and K (this is possible, since if a is sufficiently 
small then Ext,(J) = Extu(K)) .  In order to get (7 .8) ,  it is necessary to represent I and 
J as unions of adjacent intervals 

I=EXtp , (Ml)U. .  .uExtpp(MP) 

J = E x t , ( N , ) u . .  .uExtY,(Nq)  

where pi, yi E { a ] , .  . . , a&,} and Mi and N, are closed intervals which are maximal 
in some Aj with j < k. Such a representation always exists and is unique (this follows 
from (3.6) and the induction principle). Now is possible to prove that from K c I and 
K'"'=J'" it follows that K must be of the form 

K = Ext,,( M,) u . . . U Ext, (M,)  

where r a l  and s s p ,  but if r = l  then s < p .  
If we assume s < p (the case s = p ,  r > 1 is analogous) then we see that K is adjacent 

on its right-hand side to Extp,,,(Ms+,). By proposition Bk this means that K has a 
certain amount of plus sign on its right, i.e. K is of class (-+) or (++), so it is 
connective and (7.8) follows. 
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Appendix 

We give below the proofs of the two lemmas we used in § 7 .  

Lemma 7.1. Let I and J be two closed intervals and let a! > 0 be such that 
r r 

Ext, ( I )  = Ext, ( J )  and J bo(x)dx=J  b,(x) d x = 0 .  
I J 

Then Z, (I) = Z, ( J ) .  

Proof: We suppose that Ext,( I) and Ext, ( J )  are equivalent by translation (the reflection 
case is analogous) and set (see figure 7)  

I = [i3, i 4 ]  

i,= m , ( I )  

Ext,( I) = [ i ,  , i6] 

PI = P , ( I ) = p ( i z ,  i3) 

Ext, ( J )  = [ j ,  , j61 

i 2  = P o  ( I )  

MI = M , ( I )  = P ( f 4 ,  4) 
and analogously for J 

J = [ j 3 , j 4 1  

j 5 =  m , ( J )  PJ = ( J )  = P ( j 2 ,  j 3 )  M J = M , ( J )  = d j 4 J 5 ) .  

j 2  = p ,  ( J )  

From the first hypothesis of the lemma we know that 

V(x) = V(x+ t )  Vx E [ i,, i 6 ]  

where t = j , - i , = j 6 - i 6 = j 3 - i  - - j 4  ' - i 4 .  We have to prove that 

min{PI, M I }  = min{PJ, M J } .  

Without loss of generality we assume 

Pj G Mj 

and show that if 

min{PI, M,} - PJ = a # 0 

a contradiction follows. Again we can assume a > 0 (the opposite case can be treated 
analogously). 

Consider equation (2.4) with &(x)  = bh(x + t )  and x, y E [i,, i 6 ] .  In this case we have 

V ( w ) - V ( w ) =  V(w)-V(w+t)=O V W  E (X, Y )  

by hypothesis and so the second term in (2.4) can be dropped, yielding 

(bfi - 5*)(x) = ( b h  - ~ ~ ) ( y )  exp( + jxy ( b h  + b ; i ) ( U )  du) (A21 

and 
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(see equation (2.2)). The idea is to show that, unless &(I) = Z,(J), it is possible to 
find two values xo and yo such that 

('44) c = (bo - Fo)(Xo) = +2Jm&J> 0 

and 

d = j x ~ ( b o + 6 0 ) ( ~ ) d u < 0 .  (A51 

This would give an immediate contradiction since, if we assume (A5), then (A2) would 
imply 

c = ( b o - 6 0 ) ( x o ) = ( b o - 6 ~ ) ( y o )  lim [exp(d/h)]=O. 
f i -0  

Remark. If xo (the same remark applies to yo)  coincides with one of the jump points 
of bo, the limit (A3) in general does not exist. But since the number of jump points 
is finite (less than N ) ,  we can always find Zo such that it does not coincide with any 
jump point and it is sufficiently close to xo in order that (A4) holds for 2, too. 

Since PJ < min{Pr, M I } ,  we have P, < PI so that i2+ t < j ,  (see figure 7). Moreover 
we know that bo is negative on some interval on the left of j,, by definition of p , ( J ) ,  
so it is possible to find z E ( iz+ t, j,) such that 

bo( U )  = --dm(qS 0 Vu E [sj,). 

In particular we choose z such that it does not coincide with any of the absolute 
minima of V ,  so bo(z) is strictly negative. If we set xo = z - t then clearly xo E ( i,, i3) 
so we have bo(xo) > 0, and 

C E  b o ( ~ o ) - & ( ~ o ) =  b o ( x o ) - b 0 ( ~ ) = + 2 d T V & J > O .  (A6) 

Since 

(A6) implies that (b f i  - 6,,)(y) must be positive when h + 0, and so 

bo(Y) - 6o(Y 12 0 VY E [ i l ,  i61. 

+ + +  - 
I I I I I I I I I 

Figure 7. Sign of bo. 
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This means that bo(y + t )  is negative whenever bo(y)  is negative and, in consequence, 

MI S Mj 

or equivalently j ,  2 is + t .  

divide the interval [xo ,  yo]  as 
It is now straightforward to show that we get d < 0 if we choose yo = i s .  In fact, 

[ X o ,  Yo1 =[xo,j2- tlu[j2-4 i31 U [is, i41 U [ i 4 ,  i s 1  
and express the integral d over [xo, yo] as a sum 

d = d ,  + d2+ d3+  d4 

over the corresponding subintervals. Thus we obtain (see figure 7, where we have 
reported the sign of bo in the relevant intervals) 

I,-* I,-* 

(bo + go)( U )  du = du - I z j 2  du = 0 
d l  = I,, I,, 
d2 = li3 (bo + go)( U )  du = p ( j ,  - t, i 3 )  + p ( j 2 ,  j , )  = 2Pj 

d4 = is (bo + go)( U )  du = - p (  i4, i s )  - p (  j 4 ,  i5 + t )  = -2 MI 

d, = [: (bo+g0)(u)  du = bo(u)  d u +  bo(u)  du = 0. 

j 2 - 1  

i4 

J I  [J 

Finally, using (Al),  we have 

d = d ,  + d2+ d,+d4= 2(PJ - M I )  <2(PJ -min{PI, M I } )  = -2a <O. 

So the proof is complete. If we had chosen a < O  at the beginning, then the proof 
would have been similar, with I and J exchanged. 

Lemma 7.2. Let I and J be two closed intervals such that 

I is p,-preferred to J and J bo(x)  dx = 
I 

Then J is connective or, equivalently, Z , ( J )  = 0, V a  > 0. 

ProoJ: (As in the proof of lemma 7.1, we suppose that I and J are equivalent by 
translation.) Let I = [ il , i2 ]  and J = [ j ,  , j 2 ]  and t = j ,  - i, = j 2  - i 2 .  By hypothesis we 
have 

I = J  and 3aO> 0 such that Va < a0, I '" '<J'" ' .  

Assume now the thesis to be false. This means that J is a (+-) interval, so it is possible 
to find 77 > 0 such that 

b,(x) = +m v x  E ( j l -  77,J-l) (A71 

bo(x)  = -m Vx€( j2 , j2+77) .  (A81 

We can suppose q < a0, so that 
I ( S )  < J ( S )  vs4 q. 
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This condition, together with Z = J,  implies that (at least) one of the two following 
propositions is true: 

(c,) 3 a sequence {y,,} with y, E ( i ,  - 7, i,) such that y, + i, and V(y,) < V(y, + t )  
for each n ;  

(c2) 3 a sequence {y,} with yi E ( i 2 ,  i 2 +  7)  such that y, + i2 and V(y,) < V(y, + t )  
for each n. 
Assume that (c,) is satisfied (the other case is analogous). In this case (c,) and (A8) 
yield, for each n, 

(bo- L o ) ( ~ n )  = bo(yn)-bo(yn + t )  ~ J ~ v ( Y ,  + t ) - m >  0. ( ~ 1 0 )  

Now let x be any point inside ( i ,  - 7, i , ) .  From equation (2.4), remembering that 
V( w )  s V( w + t ) ,  V w E I(?', we obtain 

( b * - b - ) ( X ) 5 ( 6 * - b ; i ) ( Y f l )  exP(;[xyn (b*+b;5) (u)  du)  ( A l l )  

which, together with (AlO), tells us that (bh -&) (x)  is positive when h +O, so that 

(bo - Lo)(x) = b , (x )  - bo(x + t )  3 0 

b, (x)  = + v v ( T J  

V ~ E  ( i ,  - 7, i,). ( A W  

In turn, by (A12) and (A7), 

Vx E ( i ,  - 7, i l ) .  ('413) 

Consider now some fixed point, xo, inside ( i ,  - 7, i l ) .  We know that the LHS of ( A l l )  
is bounded (proposition (i)  of § 2),  so by (AlO), we must require that 

Y" 
d ( f l ) = { x o  ( b o + 6 0 ) ( u ) d u ~ 0  V n  

in order to avoid an explosion of the RHS of ( A l l )  when h + 0. We are going to show 
that the condition (A14) is necessarily violated. 

We decompose the integral in (A14) as 

(bo+ Ko)(u) du d ( " )  = 

i l  

( bo + J0) ( U )  du + li; ( bo + KO) ( u ) d u + ll; ( bo + KO) ( U )  d u 
= I,, 
= d ,  + d 2 +  d p ' .  

Now we note that d2 vanishes owing to the second hypothesis of the lemma, while 
d:"' goes to zero since y, + i 2 .  As regards dl ,  we use (A7) and (A13) and obtain 

d , = j : :  (b ,+&)(u)du= (-+J2V(u+t))du I:: 
which is a finite positive number. So 

( b o + 6 0 ) ( u ) d u > 0  

for n sufficiently large, in contradiction with (A14). 
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